Multiobjective Optimization of Dynamic Processes by Evolutionary Methods
نویسندگان
چکیده
The real-world optimisation of dynamic processes, such as batch processes, space applications and robotic problems, is usually a matter of several objectives and constraints. In many cases it is difficult to deal with such problems with conventional methods. Evolutionary methods provide an interesting alternative, with less programming and computational efforts. This paper presents four Evolutionary methods for solving complex multiobjective problems applied to an illustrative example: the optimisation and control of the industrial beer fermentation. The first method is based on aggregating functions, and the others adopt a Pareto set approach. Copyright © 2002 IFAC
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملMultiobjective evolutionary algorithm based on multimethod with dynamic resources allocation
In the last two decades, multiobjective optimization has become main stream and various multiobjective evolutionary algorithms (MOEAs) have been suggested in the field of evolutionary computing (EC) for solving hard combinatorial and continuous multiobjective optimization problems. Most MOEAs employ single evolutionary operators such as crossover, mutation and selection for population evolution...
متن کاملApplication of Multiobjective Evolutionary Algorithms for Dose Optimization Problems in Brachytherapy
In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in form of an aggregate function which combines individual objectives into a single utility value. As a result, the optimization problem becomes single objective, prior to optimization. Up to 300 parameters must be optimized satisfying objectives which are often competing. We use...
متن کاملTransfer Learning based Dynamic Multiobjective Optimization Algorithms
One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is the optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing the “experiences” to construct a prediction model via statistical machine learning approaches. However most of the existing methods ...
متن کاملEffectiveness of Weighted Aggregation of Objectives for Evolutionary Multiobjective Optimization: Methods, Analysis and Applications
Multiobjective optimization using the conventional weighted aggregation of the objectives method is known to have several drawbacks. In this paper, multiobjective optimization using the weighted aggregation method is approached with the help of evolutionary algorithms. It is shown through a number of test functions that a Pareto front can be achieved from one single run of evolutionary optimiza...
متن کامل